Smathermather's Weblog

Remote Sensing, GIS, Ecology, and Oddball Techniques

Posts Tagged ‘pgPointCloud’

Taking Slices from LiDAR data: Part IX

Posted by smathermather on February 20, 2017

Part 9 of N… , see e.g. my previous post on the topic.

We’ve been working to reduce the effect of overlapping samples on statistics we run on LiDAR data, and to do so, we’ve been using PDAL’s filters.sample approach. One catch: this handles the horizontal sampling problem well, but we might want to intentionally retain samples from high locations — after all, I want to see the trees for the forest and vice versa. So, it might behoove us to sample within each of our desired height classes to retain as much vertical information as possible.

Posted in 3D, Database, Docker, LiDAR, Other, PDAL, pointcloud, PostGIS, PostgreSQL | Tagged: , , , , , | Leave a Comment »

Taking Slices from LiDAR data: Part VIII

Posted by smathermather on February 18, 2017

Part 8 of N… , see e.g. my previous post on the topic.

I didn’t think my explanation of sampling problems with LiDAR data in my previous post was adequate. Here are a couple more figures for clarification.

We can take this dataset over trees, water, fences, and buildings that is heavily sampled in some areas and sparsely sampled in others and use PDAL’s filters.sample (Poisson dart-throwing) to create an evenly sampled version of the dataset.

Figure showing overlap of LiDAR scanlines

Figure showing overlap of LiDAR scanlines

Figure showing data resampled for eveness

Figure showing data resampled for evenness

An extra special thanks to the PDAL team for not only building such cool software, but being so responsive to questions!

Posted in 3D, Database, Docker, LiDAR, Other, PDAL, pointcloud, PostGIS, PostgreSQL | Tagged: , , , , , | Leave a Comment »

Taking Slices from LiDAR data: Part VII

Posted by smathermather on February 15, 2017

Part 7 of N… , see e.g. my previous post on the topic.

More work on taking LiDAR slices. This time, the blog post is all about data preparation. LiDAR data, in its raw form, often has scan line effects when we look at density of points.

lidar_flightlines

This can affect statistics we are running, as our sampling effort is not even. To ameliorate this affect a bit, we can decimate our point cloud before doing further work with it. In PDAL, we have three choices for decimation: filters.decimation, which samples every Nth point from the point cloud; filters.voxelgrid, which does volumetric pixel based resampling; and filters.sample or “Poisson sampling via ‘Dart Throwing'”.

filters.decimation won’t help us with the above problem. Voxelgrid sampling could help, but it’s very regular, so I reject this on beauty grounds alone. This leaves filters.sample.

The nice thing about both the voxelgrid and the poisson sampling is that they retain much of the shape of the point cloud while down sampling the data:

subsample-ex1

subsample-ex2

We will execute the poisson sampling in PDAL. As many things in PDAL are best done with a (json) pipeline file, we construct a pipeline file describing the filtering we want to do, and then call that from the command line:

We can slice our data up similar to previous posts, and then look at the point density per slice. R-code for doing this forthcoming (thanks to Chris Tracey at Western Pennsylvania Conservancy and the LidR project), but below is a graphic as a teaser. For the record, we will probably pursue a fully PDAL solution in the end, but really interesting results in the interim:

image001

More to come. Stay tuned.

Posted in 3D, Database, Docker, LiDAR, Other, PDAL, pointcloud, PostGIS, PostgreSQL | Tagged: , , , , , | 2 Comments »

Taking Slices from LiDAR data: Part VI

Posted by smathermather on March 19, 2016

I finally got PDAL properly compiled with Point Cloud Library (PCL) baked in. Word to the wise — CLANG is what the makers are using to compile. The PDAL crew were kind enough to revert the commit which broke GCC support, but why swim upstream? If you are compiling PDAL yourself, use CLANG. (Side note, the revert to support GCC was really helpful for ensuring we could embed PDAL into OpenDroneMap without any compiler changes for that project.)

With a compiled version of PDAL with the PCL dependencies built in, I can bypass using the docker instance. When I was spawning tens of threads of Docker and then killing them, recovery was a problem (it would often hose my docker install completely). I’m sure there’s some bug to report there, or perhaps spawning 40 docker threads is ill advised for some grander reason, but regardless, running PDAL outside a container has many benefits, including simpler code. If you recall our objectives with this script, we want to:

  • Calculate relative height of LiDAR data
  • Slice that data into bands of heights
  • Load the data into a PostgreSQL/PostGIS/pgPointCloud database.

The control script without docker becomes as follows:

#!/bin/bash 

# readlink gets us the full path to the file. This is necessary for docker
readlinker=`readlink -f $1`
# returns just the directory name
pathname=`dirname $readlinker`
# basename will strip off the directory name and the extension
name=`basename $1 .las`

# PDAL must be built with PCL.
# See http://www.pdal.io/tutorial/calculating-normalized-heights.html

pdal translate "$name".las "$name".bpf height --writers.bpf.output_dims="X,Y,Z,Intensity,ReturnNumber,NumberOfReturns,ScanDirectionFlag,EdgeOfFlightLine,Classification,ScanAngleRank,UserData,PointSourceId,HeightAboveGround"

# Now we split the lidar data into slices of heights, from 0-1.5 ft, etc.
# on up to 200 feet. We're working in the Midwest, so we don't anticipate
# trees much taller than ~190 feet
for START in 0:1.5 1.5:3 3:6 6:15 15:30 30:45 45:60 60:105 105:150 150:200
        do
        # We'll use the height classes to name our output files and tablename.
        # A little cleanup is necessary, so we're removing the colon ":".
        nameend=`echo $START | sed s/:/-/g`

        # Name our output
        bpfname=$name"_"$nameend.bpf

        # Implement the height range filter
        pdal translate $name.bpf $bpfname -f range --filters.range.limits="HeightAboveGround[$START)"

        # Now we put our data in the PostgreSQL database.
        pdal pipeline -i pipeline.xml --writers.pgpointcloud.table='pa_layer_'$nameend --readers.bpf.filename=$bpfname --writers.pgpointcloud.overwrite='false'
done

We still require our pipeline xml in order to set our default options as follows:

<?xml version="1.0" encoding="utf-8"?>
<Pipeline version="1.0">
  <Writer type="writers.pgpointcloud">
    <Option name="connection">
      host='localhost' dbname='user' user='user' password=‘password’
    </Option>
    <Option name="table">54001640PAN_heightasz_0-1.5</Option>
    <Option name="compression">dimensional</Option>
    <Filter type="filters.chipper">
      <Option name="capacity">400</Option>
      <Reader type="readers.bpf">
      <Option name="filename">54001640PAN_heightasz_0-1.5.bpf</Option>
      </Reader>
    </Filter>
  </Writer>
</Pipeline>

And as before, we can use parallel to make this run a little lot faster:

find . -name '*.las' | parallel -j20 ./pdal_processor.sh

For the record, I found out through testing that my underlying host only has 20 processors (though more cores). No point in running more processes than that… .

So, when point clouds get loaded, they’re broken up in to “chips” or collections of points. How many chips do we have so far?:

user=# SELECT COUNT(*) FROM "pa_layer_0-1.5";
  count   
----------
 64413535
(1 row)

Now, how many rows is too many in a PostgreSQL database? Answer:

In other words, your typical state full of LiDAR (Pennsylvania or Ohio for example) are not too large to store, retrieve, and analyze. If you’re in California or Texas, or have super dense stuff that’s been flown recently, you will have to provide some structure in the form of partitioning your data into separate tables based on e.g. geography. You could also modify your “chipper” size in the XML file. I have used the default 400 points per patch (for about 25,765,414,000 points total), which is fine for my use case as then I do not exceed 100 million rows once the points are chipped:

      <Option name="capacity">400</Option>

Posted in 3D, Database, Docker, LiDAR, Other, PDAL, pointcloud, PostGIS, PostgreSQL | Tagged: , , , , , | 3 Comments »

Taking Slices from LiDAR data: Part V

Posted by smathermather on February 10, 2016

For this post, let’s combine the work in the last 4 posts in order to get a single pipeline for doing the following:

  • Calculate relative height of LiDAR data
  • Slice that data into bands of heights
  • Load the data into a PostgreSQL/PostGIS/pgPointCloud database.
#!/bin/bash 

# readlink gets us the full path to the file. This is necessary for docker
readlinker=`readlink -f $1`
# returns just the directory name
pathname=`dirname $readlinker`
# basename will strip off the directory name and the extension
name=`basename $1 .las`

# Docker run allows us to leverage a pdal machine with pcl built in,
# thus allowing us to calculate height.
# See http://www.pdal.io/tutorial/calculating-normalized-heights.html
docker run -v $pathname:/data pdal/master pdal translate //data/"$name".las //data/"$name"_height.bpf height --writers.bpf.output_dims="X,Y,Z,Intensity,ReturnNumber,NumberOfReturns,ScanDirectionFlag,EdgeOfFlightLine,Classification,ScanAngleRank,UserData,PointSourceId,Height";

# Now we split the lidar data into slices of heights, from 0-1.5 ft, etc.
# on up to 200 feet. We're working in the Midwest, so we don't anticipate
# trees much taller than ~190 feet
for START in 0:1.5 1.5:3 3:6 6:15 15:30 30:45 45:60 60:105 105:150 150:200
 do
  # We'll use the height classes to name our output files and tablename.
  # A little cleanup is necessary, so we're removing the colon ":".
  nameend=`echo $START | sed s/:/-/g`

  # Name our output
  bpfname=$name"_"$nameend.bpf

  # Implement the height range filter
  pdal translate $name"_height".bpf $bpfname -f range --filters.range.limits="Height[$START)"

  # Now we put our data in the PostgreSQL database.
  pdal pipeline -i pipeline.xml --writers.pgpointcloud.table='layer_'$nameend --readers.bpf.filename=$bpfname --writers.pgpointcloud.overwrite='false'
done

Now, we can use parallel to make this run a little faster:

find . -name "*.las" | parallel -j6 ./pdal_processor.sh {}&

Sadly, we can run into issues in running this in parallel:

PDAL: ERROR:  duplicate key value violates unique constraint "pointcloud_formats_pkey"
DETAIL:  Key (pcid)=(1) already exists.


PDAL: ERROR:  duplicate key value violates unique constraint "pointcloud_formats_pkey"
DETAIL:  Key (pcid)=(1) already exists.

This issue is a one time issue, however — we just can’t parallelize table creation. Once the tables are created however, I believe we can parallelize without issue. I’ll report if I find otherwise.

Posted in 3D, Database, Docker, LiDAR, Other, PDAL, pointcloud, PostGIS, PostgreSQL | Tagged: , , , , , | Leave a Comment »